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Abstract. One-dimensional convolutional models are used for various natural language processing tasks. This

study revisits Dynamic Convolutional Neural Network (DCNN) architecture. The study investigates the effect

of language modeling pre-training on Wikicorpus on published experiment results for DCNN. Therefore, the

reference study integrates a top layer for the language-modeling training into DCNN. Also, benchmarks were

reported for the original DCNN compared to the pre-trained language model version. The revisited model was

then benchmarked for sentiment classification and question classification tasks. Benchmarks include transfer

learning from pre-trained DCNN for language modeling and ground-up trained versions of DCNN on Stanford

Sentiment Tree Bank and TREC Question Classification datasets.
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1 Introduction

With the introduction of Time Delay Neural Networks (TDNN) (Waibel et al., 1989), the natural
language processing field developed a branch of similar models related to TDNN. TDNN is an
ancestor to some of the current popular convolutional models. Its work scheme is based on
arranging the data input to the model. Data arranged as time series and weight/kernel of
TDNN convolve over inputs corresponding rows. After that, Bengio et al. (2003) and Collobert
& Weston (2007) have used the concept of concatenation of word vectors to form a feature vector
for sentence representation. In Bengio et al. (2003), the Language Modeling (LM) task has been
inspected statistically.

On the other hand, Collobert & Weston (2007) has mainly focused on the Semantic Role
Labeling (SRL) task. In Collobert & Weston (2007), they feed a fixed window size of words and
classify the label for the middle word. Later, TDNN architecture was used in Collobert & Weston
(2008) to learn a series of word vectors instead of time-series data. However, more importantly,
they have introduced k-max-pooling operation over the rows of concatenated word vectors. This
allowed variable-length sentences to be processed without recurrent states. They have used this
model in various tasks, namely, Multi-Task Learning (MTL). It has been covered in Collobert
& Weston (2008). In the context of MTL, they have used the same model for SRL, LM, Part
of Speech (POS) Tagging, Named Entity Recognition (NER), Chunking, and Synonyms with
different tops for each. Amongst all the tasks mentioned, only LM trained alone. For this task,
they have used the Wikipedia. To achieve that, they have processed all sentences in a window
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size of 11, wsz = 11. Each window’s middle word(Word of Interest) gets replaced with a random
word from their vocabulary and presents the model as the wrong sentence, whereas unmodified
ones are right. They take advantage of the complete context of a word rather than learning
to estimate the occurrence probability of the next word (Collobert & Weston, 2008). Although
the approach they have followed in Collobert & Weston (2008) has worked out well, it was not
novel; it has been used by Okanohara & Tsujii (2007) before.

Furthermore, similar to Collobert & Weston (2007), Collobert et al. (2011) utilized a similar
approach over the feature matrix of word vectors. However, they aim to solve multiple tasks
with a single model with shared weights this time. They tried to excel in various tasks while
avoiding task-specific engineering in their work (Collobert et al., 2011). Later, Kalchbrenner
et al. (2014) introduced a pooling operation similar to the one used in Max-TDNN by Collobert
& Weston (2008). They have proposed a heuristic to calculate the number of features selected
from each row of the feature matrix; thus, the longer the sentence, the more features to be
extracted from it. The heuristic is given in Equation 1.

kl = max

(
ktop, d

L− l

L
se
)

(1)

In Equation 1, the calculation of k value is explained. L is the total number of convolutional
layers, l is the number of convolutional layers which the pooling operation is applied after, s is
the length of the sentence, ktop is the fallback value picked up for the last dynamic k-max pooling
layer thus input will be reduced to a fixed size, and can be processed by a fully connected layer.
The difference from Max-TDNN is to apply k-max pooling regardless of the output size.

As an extra to the dynamic pooling layer, Kalchbrenner et al. (2014) has applied a b bias
value after the dynamic pooling layer. Other than that, Kalchbrenner et al. (2014) has almost
identical architecture to Max-TDNN proposed in Collobert & Weston (2008) and achieved rel-
atively higher scores than Max-TDNN and some statistical baselines. However, Kalchbrenner
et al. (2014) has shared their interesting insight into the convolutional architecture applied over
sentences. They propose that the trained model, with its convolutional and pooling layers, in-
duces an acyclic graph over the input sentence. In this induced graph, the convolution kernel
applies a weighted processing mechanism over feature matrices, and dynamic k-max pooling op-
eration drops or selects features. This computational structure continues until the last pooling
layer, where the variable length feature matrix is reduced to a fixed length, which is considered
the root of the tree (Kalchbrenner et al., 2014).

Later, some diverging studies were introduced. A convolutional-recurrent hybrid model
inspired by Kalchbrenner et al. (2014) was presented by Yan et al. (2016) for the Chinese lan-
guage. It has introduced using the output of the Bidirectional LSTM (Bi-LSTM) (Graves &
Schmidhuber, 2005) model as input to a Dynamic Convolutional Neural Network (DCNN) like
convolutional neural network with a fixed pooling. However, the model isn’t utilized on common
datasets considered in this study. In Zhou et al. (2017), it has introduced a model that uses
Bi-LSTM outputs as input to DCNN-like one-dimensional convolution to extract higher-level
features to be reduced by “max-over-time” pooling as also used by Collobert & Weston (2008).
However, they have utilized a sigmoid layer instead of softmax since they aim to extract fea-
tures. A Long Short-Term Memory (LSTM) (Hochreiter & Urgen Schmidhuber, 1997) decoder
with Softmax activation (Bridle, 1989) layer for NER task uses extracted features. In another
study, Tian et al. (2019) has utilized DCNN directly with a Recurrent Neural Network (RNN)
(Rumelhart & McClelland, 1987) at the end for a generative conversational system. They have
utilized k-max pooling to ensure a non-empty feature map and added a dropout layer for reg-
ularization. In addition, the model incorporates an intention vector over the attention weights
for distributing attention.

In this study, DCNN architecture is used as the base architecture for benchmarking the
model for comparison to reported results and measuring the effect of language modeling pre-
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training on reported results in Kalchbrenner et al. (2014). The main contributions of this study
are,

• Since DCNN does not support language modeling by design, we created a top layer for the
task as described in Collobert & Weston (2008) and compared it to published language
modeling results.

• With language modeling capability added to DCNN, additional benchmarks are also re-
ported for comparison to the original DCNN in Kalchbrenner et al. (2014).

• The model has trained for sentiment and question classification tasks from Kalchbrenner
et al. (2014) with and without transfer learning from language modeling to observe the
effects of language modeling.

Datasets used for sentiment classification are Stanford Sentiment Tree Bank (Socher et al.,
2013) and for question type classification TREC QC (Li & Roth, 2002). Stanford Sentiment
Tree Bank contains both sentences and their syntactic tree structures. Therefore, sentences and
their corresponding sentiments are considered only in the scope of this study.

TREC QC dataset consists of 6 types of questions and will be used for benchmarking purposes
with original DCNN results reported in Kalchbrenner et al. (2014).

The structure of the paper continues with Section 2: Model and experiments, where related
convolutional architectures are compared concerning their differences and experiments are docu-
mented. Section 3: Conclusion, summarized goals of the study, and stated comments regarding
the performance of experiments.

2 Model and Experiments

In this study, the model proposed in Kalchbrenner et al. (2014) is kept as the base model, and
any alterations done so far are explained in their respective experiment section. The architecture
of the original DCNN is given in Figure 1 as depicted by Kalchbrenner et al. (2014).

We have experimented with DCNN on various datasets that are also used by Max-TDNN
of Collobert & Weston (2008) and DCNN of Kalchbrenner et al. (2014). Those datasets are
Wikicorpus (Reese et al., 2010) , SSTB (Socher et al., 2013) , Trec QC (Li & Roth, 2002) .
We have concluded that Collobert & Weston (2008)’s specification of “entire Wikipedia” was
unclear from the point of data pre-processing (stop words and the number of sentences involved
weren’t mentioned). Thus, we have used Wikicorpus from Reese et al. (2010) for the language
modeling task.

To use a language model for transfer learning, word vector size is kept d = 16. In addition
to replicating the original DCNN benchmarks with transfer learning, the model has also trained
ground-up for that specific task to compare the difference between transfer learning. Those
benchmarks are labeled as “ground-up” in all tables.

Another difference in experiments is caused by the missing information. Due to the original
study not publishing batch size, we kept the batch size as 1 for SSTB and Trec QC benchmarks.

2.1 Language Modeling

In reported experiments, explanations of Collobert & Weston (2008) have followed for our version
of the Language Modeling task. Because Collobert & Weston (2008) has used Wikipedia to
create a custom dataset. Therefore, the number of sentences is not mentioned in the original
study. For this reason, our benchmarks use the Wikicorpus dataset Reese et al. (2010). In the
Wikicorpus dataset, 1000000 sentences are used for the language modeling training, dataset is
split by 80%-20% for train and testing. Similar to the Collobert & Weston (2008), a dictionary
of 30000 most common words is used from the Wikicorpus dataset. These sentences are used
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Figure 1: DCNN architecture. As originally published in Kalchbrenner et al. (2014).

for creating fixed window size sub-sentences as mentioned in Collobert & Weston (2008). For
each sentence window, a pseudo-negative instance is created by replacing word-of-interest with
a randomly selected word from the lookup table.

Gradient descent optimization has been used with learning rate lr = 10e−1. The model
configuration that Kalchbrenner et al. (2014) has used to classify the SSTB dataset kept. The
only architectural modifications are the descriptions of Collobert & Weston (2008) for top layers.
Therefore, a 100 node layer and a dropout layer with 0.5 probability are added after the penul-
timate layer. The model is referred to as LM in all tables. However, word vectors are restricted
to d = 16 and ktop = 3 for this study. This approach uses weights for trained word vectors and
convolutional layers and trains further for sentiment prediction and question classification tasks.
The only exception is that the Semantic Role Labeling task before training wasn’t included in
the Language Modeling test. Since stand-alone language modeling accuracy was not reported in
Collobert & Weston (2008), we couldn’t measure the effectiveness of the architectural difference.
In addition, we have repeated original experiments as much as possible from the explanations
from Kalchbrenner et al. (2014) for sentiment prediction and question classification tasks.

Table 1: Test results for Wikicorpus dataset. Abbreviations “w” and “w/o” correspondingly refer to “with” and
“without”. LM stands for Language Model pre-training replicated in this work, Max-TDNN (ground-up) refers
to the original Max-TDNN model from Collobert & Weston (2008). The parameter d refers to word vector size
and lr for learning rate.

Model Name, Training ktop d lr Algorithm Accuracy %

LM (ground-up) w/o SRL 3 16 1e−1 SGD 74.6
Max-TDNN (published) w SRL N/A 15 N/A SGD 85.6

192



A.M. CEYLAN: BENCHMARKING DYNAMIC CONVOLUTIONAL NEURAL NETWORK...

2.2 Stanford Sentiment Tree Bank

This task uses default train and test splits of the SSTB dataset as also used by Kalchbrenner
et al. (2014). The experiment setup replicates DCNN from the Kalchbrenner et al. (2014),
with an exception. That exception is the language model training beforehand. However, in
our experiments, we couldn’t receive the same results reported by Kalchbrenner et al. (2014).
Repeated experiments use Xavier initialization (Glorot & Bengio, 2010) for weights and uniform
random initialization for word vectors since the extent of the “random” has not been explained
in the original study.

Table 2: Test results for Stanford Sentiment Tree Bank dataset. LM stands for Language Model, DCNN
(ground-up) refers to the original DCNN model from Kalchbrenner et al. (2014), replicated in this work. The
parameter d refers to word vector size and lr for learning rate. The term “fine-grained” is the same architecture.
However, with the filters having sizes 10 and 7, the top pooling parameter k is 5, and the number of maps is,
respectively, 6 and 12, as also reported in Kalchbrenner et al. (2014).

Model Name, Training

Models ktop d lr Algorithm Accuracy %

LM (transfer) Finegrained 3 16 1e−2 SGD 35.2
LM (transfer) Binary 3 16 1e−2 SGD 71.17
LM (transfer) Finegrained 3 16 1e−2 AdaGRAD 32.08
LM (transfer) Binary 3 16 1e−2 AdaGRAD 69.19

LM (ground-up) Finegrained 3 16 1e−2 SGD 32.31
LM (ground-up) Binary 3 16 1e−2 SGD 67.44
LM (ground-up) Finegrained 3 16 1e−2 AdaGRAD 30
LM (ground-up) Binary 3 16 1e−2 AdaGRAD 67.44

DCNN (ground-up) Finegrained 3 48 1e−2 SGD 32.22
DCNN (ground-up) Finegrained 4 48 1e−2 SGD 31.58
DCNN (ground-up) Finegrained 3 48 1e−2 AdaGRAD 33.17
DCNN (ground-up) Finegrained 4 48 1e−2 AdaGRAD 34.21

DCNN (ground-up) Binary 3 48 1e−2 SGD 65.95
DCNN (ground-up) Binary 4 48 1e−2 SGD 65.51
DCNN (ground-up) Binary 3 48 1e−2 AdaGRAD 71.44
DCNN (ground-up) Binary 4 48 1e−2 AdaGRAD 70.06

DCNN (published) Finegrained 4 48 N/A AdaGRAD 48.5
DCNN (published) Binary 4 48 N/A AdaGRAD 86.8

Max-TDNN (published) Finegrained N/A 48 N/A AdaGRAD 48.5
Max-TDNN (published) Binary N/A 48 N/A AdaGRAD 86.8

2.3 Trec QC

For this task, two different experiment setups were arranged. The language model that has
previously been pre-trained, trained over the Trec QC datasetLi & Roth (2002). The replaced
top layer is the only modification different from the language model. We have put a 6-node
output layer with softmax activation for this purpose. Also, we kept the dropout layer with
a 0.5 probability right before the classification layer concerning the DCNN. We refer to it LM
in the Table 3. On the other hand, we have repeated the experiment setup described in the
Kalchbrenner et al. (2014) and reported its results in the same table.
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Table 3: Test results for Trec Question Classification dataset. LM stands for Language Model, DCNN (ground-
up) refers to the original DCNN model from Kalchbrenner et al. (2014) replicated in this work. The parameter
d refers to word vector size and lr for learning rate. This experiment showed no significant improvement when
transfer learning was applied. Also, repeated experiments with the configuration published in Kalchbrenner
et al. (2014) did not achieve the published results. The lower value of d with transfer learning shows up to 3%
improvement in the accuracy.

Model Name, Training

Models ktop d lr Algorithm Accuracy %

LM (transfer) Finegrained 3 16 1e−2 SGD 86.8
LM (transfer) Binary 3 16 1e−1 AdaGRAD 89.2
LM (transfer) Finegrained 3 16 1e−2 AdaGRAD 86.8
LM (transfer) Binary 3 16 1e−3 AdaGRAD 42.4

LM (ground-up) Finegrained 3 16 1e−2 SGD 86

DCNN (ground-up) Finegrained 3 32 1e−2 SGD 86.6
DCNN (ground-up) Finegrained 4 32 1e−2 SGD 86.2
DCNN (ground-up) Finegrained 3 32 1e−2 AdaGRAD 83.8
DCNN (ground-up) Finegrained 4 32 1e−2 AdaGRAD 82.2

DCNN (published) Finegrained 4 32 N/A AdaGRAD 93
Max-TDNN (published) Finegrained N/A 32 N/A AdaGRAD 84.4

3 Conclusion

In this work, experiments with the model proposed in the Kalchbrenner et al. (2014) repeated as
much as possible with the information available from the reference study. We have also aimed to
improve results by training DCNN architecture on the language modeling task described in the
Collobert & Weston (2008). Due to limited experimentation capabilities, the state-of-the-art
results with the language modeling task couldn’t be achieved.

Even with the non-perfect language modeling base training, our modified DCNN scored more
than the version without language modeling training. Another downside of this study is that
the results obtained by the attempt to repeat the original DCNN experiments do not match the
ones provided. We don’t think it relates to our setup, but how Kalchbrenner et al. (2014) has
processed data to perform training using batches.
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